
AD-A096 172 MITRE CORP BEDFORD MA F/6 9/2
APPLICABILITY OF 0505 SIMULATION MODELING SYSTEM TO ESO SYSTEM --ETC(U)
FEB G1 J K FRYER F19681-C-001

UNCLASSIFIED MTR-8187 ESD-TR-8111 NL

* EhEEhhEEEE

L 1 2.5

12.

1111A. 1.52.0' 4

111 1I..... LA i 1.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

ESD-TR-81-114 MTR-8187..

APPLICABILITY OF DSDS
SIMULATION MODELING SYSTEM

TO ESD SYSTEM ACQUISITION PROBLEMS

BY JEFFREY K. FRYER

FEBRUARY 1981

Prepared for

DEPUTY FOR TECHNICAL OPERATIONS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
Hanscom Air Force Base, Massachusetts ..

:8P

Project No. 522M
. Prepared by

Approved for public release; THE MITRE CORPORATIONS distribution unlimited.]' p MIK O PIAT N

LJJ Bedford, Massachusetts
Contract No. F19628-81-C-0001

S1 3 10 008

When U.S. Government drawings, specifications,
or other data are used for any purpose other
than a definitely related government procurement

operation, the government thereby incurs no

responsibility nor any obligation whatsoever; and

the fact that the government may have formu-

lated, furnished, or in any way supplied the said

drawings, specifications, or other data is not to be

regarded by implication or otherwise, as in any

manner licensing the holder or any other person

or corporation, or conveying any rights or per-
mission to manufacture, use, or sell any patented

invention that may in any way be related thereto.

Do not return this copy. Retain or destroy.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for publication.

BRADLEY W. UTZ, Capt, USAF JA-ES t. NEELY, Jr., LTCUSkF

Project -Manager Cnief, Coaiputer Engineering
Coinputer Engineering Applications Division
Applications Division

0 6. JE 0c onel, USAF
j), Compu r Systems Engineering

;e) uc yy fo Te i alOperations

T i , I l i [. .

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Ulief Dat*a,;._____________________

f14 EPORT DOCUMAENTATION PAGE BFRE INTUTOR

2. GOVT ACCESSION No. 3. RECIPIENT'S CATALOG NUMBER

P R. ox8 PrjcJN.52

HGIABLT OFFONA SIMNDLAADRES

CQUISITa. DECL~r1 GS . RECPTORT DONUMRADN

10SPOGAEDLEM

I.DSRUTORNZATAEMN NAMf AND~ ReDoRES POECTS

Apred fR orpbicrlase;n distributionNunlimited.

11. SUPP LENTAR OTESNM N DDESa

DIscRET EVEN M OD 17 NG2

SIMULATION

& 20. ABSTRACTS (Continue on reverse side if necessary and identify by block number)

DSDS (Data Systems Dynamic Simulator) is a performance modeling tool developed for
NASA by General Electric for the simulation of computer-communications systems.
The system has been installed on the MITRE IBM 370. This paper presents the results
of implementing five benchmark problems that were designed to be representative of
problems confronting ESD/MITRE systems engineers. DSDS was found to be relatively
easy to learn and use. However, the system must be made more efficient and undergo
a thorough testing and validation effort before It can be considered a useful tool for (ove 1

DD I ORP 1473 EDITION OF INOV 65 1SOBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF TNIS PAGE (Mhen Data Entf,00.

O-WN~.w

UNCLASSIFIED
SECUmTV CLASSPICATION OF TNIS PAOG[Ulh Do* gIM

20. ABSTRACT (Concludedl

ESD/MITRE use.

UNCLASSIFIED~~SICuMITY CL.ASS|ieCAiOUl OPe
?U'* 'AG WP e DAta Enqg.

ACKNOWLEDGMENT

This report has been prepared by The MITRE Corporation under
Project No. 522M. The contract is sponsored by the Electronic Systems
Division, Air Force Systems Command, Hanscom Air Force Base,
Massachusetts.

This report was prepared for the Air Force Systems Command,
Electronic Systems Division, under Project 522M, C3 System Performance
Modeling and Simulation. The information on the DSDS system was made
possible by the generous cooperation of those people intimately
involved in its development. I would particularly like to thank
Mr. Norm Geer of GE/Huntsville and Dr. J. W. Hooper of the University
of Alabama at Huntsville (formerly of NASA/Marshall) for their help
in using the DSDS system. Thanks also to Mr. William Davenport and
Mr. Tom Grenchik of NASA/Goddard for their demonstration of the
interactive version of DSDS and information regarding its use.

The author also wishes to thank Mr. Herman Schultz for his
technical guidance throughout this effort. Thanks also to
Ms. Donna Leary for her typing and editing efforts.

DSDS (Data Systems Dynamic Simulator) is a performance modeling
tool developed for NASA by General Electric for the simulation of
computer-communications systems. The system has been installed on the
MITRE IBM 370. This paper presents the results of implementing five
benchmark problems that were designed to be representative of problems

confronting ESD/MITRE systems engineers. DSDS was found to be rela-
tively easy to learn and use. However, the system must be made more
efficient and undergo a thorough testing and validation effort before
it can be considered a useful tool for ESD/MITRE use.

rAc
Oes~sic

fl 7 For
, N~JTIs & :

I "IC
. i..i

An
1

- -

Le(

TABLE OF CONTENTS

Section

LIST OF ILLUSTRATIONS 5

LIST OF TABLES 5

INTRODUCTION 7

2 MODELING THE FIVE BENCHMARK PROBLEMS 8

SYSTEM DIFFICULTIES 8

System Errors 8

System Limitations 11

Model Debugging 12

BENCHMARK PROBLEM IMPLEMENTATION i2

Benchmark Problem I 13

Benchmark Problem II 13

Benchmark Problem Ila 14

Benchmark Problem 11 14

Benchmark Problem IV 14

Benchmark Problem V 15

3 RESULTS OF EVALUATION 16

EVALUATION FACTORS 16

System Performance Time 16

System Learn Time 16

Input Language 18

Model Build Time 18

Diagnostics 18

Modifiability 18

Output Reports 18

3

TABLE OF CONTENTS (Concluded)

Section Page

User Documentation 19

Use Costs 19

ENHANCEMENTS 19

4 SUMMARY AND CONCLUSIONS 22

LIST OF REFERENCES 23

APPENDIX 24

'i4

LIST OF ILLUSTRATIONS

Figure Page

A-1 DSEM Diagram of Problem I Subnet Node 3 25

LIST OF TABLES

Table Page

1 DSEMs Used for Benchmark Problems 9

2 DSDS Evaluation Factors 17

A-1 DSDS Output Statistics 27

5,

SECTION 1

INTRODUCTION

The primary objective of the Performance Modeling and Simulation
Project is to acquire computer-communications system performance
modeling tools for use during the conceptual phase of C3 system
acquisitions. These tools will assist the Electronic Systems
Division Program Offices (ESD POs) and supporting MITRE personnel in
performing conceptual-phase system engineering activities and
analyses.

One type of performance modeling tool MITRE has been examining
is termed a General Purpose Modeling System (GPMS). This type of
system uses a high-level language t6 create a system model from a
library of preprogrammed submodels.-5?Four such modeling systems --

NASA's DSDS (Data Systems Dynamic Simulator), TRW's PERCAM
(Performance and Cost Analysis Model), Hughes' DAS/DDPM (Design
Analysis System/Distributed Data Processing Model), and Martin
Marietta's ARES (Automated Requirements Engineering System) --

have been examined. -All the systems except DSDS were either
unavailable or undes rable for one reason or another. DAS/DDPM is
written in a proprietary language and is therefore unavailable.
ARES is not yet com lete nor validated. PERCAM is primarily a
system for modelix war games and is not suitable for modeling
computer-communi tions systems. DSDS, on the other hand, is both
available to M TRE and applicable to ESD/MITRE problems, so it was
selected forzhands-on testing. A brief description of DSDS is given
in the appendix. For further information on the design and use of
DSDS, see [GRAF79, HOOP78, NASA76, NASA79, and NASA80].

This report presents the results of implementing five benchmark
problems using the batch version of DSDS and discusses how DSDS
might be made more useful to ESD/MITRE. The benchmark problems
were developed to assist in the evaluation of modeling systems.
DSDS's applicability to these problems is presented lq--s-ee art 47
followed k.-- cy an overall evaluation of DSDS and a discus-
sion of potential enhancements to the system. A brief summary of
the report is given in section 4.

T

SECTION 2

MODELING THE FIVE BENCHMARK PROBLEMS

This section discusses the results of applying DSDS to the five
benchmark problems. These problems represent a variety of systems
engineering problems that are expected to confront ESD/MITRE systems
engineers. The first part of this section discusses DSDS system
difficulties that apply to all benchmark problems. The second part
describes the implementation status of each benchmark problem and
any specific difficulties encountered. Benchmark problem I was
implemented by GE as part of the previous evaluation effort
[NASA79]. Benchmark problems II through V were implemented for this
study.

SYSTEM DIFFICULTIES

Many difficulties were encountered in modeling and testing the
benchmark problems. Due to limitations in the DSDS documentation
and the vagaries of certain DSDS system elements, some of the models
had to be changed during testing and debugging. For example, the
size of the model for benchmark problem II varied between 110 and
350 DSEMs (Data Systems Element Models) with final size about 150.
System difficulties encountered in implementing the benchmark
problems can be divided into system errors, system limitations, and
model debugging. A description of each follows.

System Errors

A major problem was encountered with the DSEMs, the basic
modeling elements of the system. Each DSEM is a preprogrammed,
parameterized model of a system element. The user supplies
parameter values and links the DSEMs together to create a system
model. About 150 DSEMs are currently available to the user.
However, only 23 DSEMs were needed to model the benchmark problems.
These DSEMs are listed in table 1.

DSEMs that did not work as specified in the user's manual
include DATSEN, USER02, DATGEN, DMANDQ, and RANROU. Both the DATSEN
(Data Sensor) and USER02 (termination) DSEMs did not work for
message transactions. As a result, all DATSEN blocks had to be
replaced with two other DSEMs, DUPLIC (Duplicate) and SETSW (Set

8

Table 1

DSEMs Used for Benchmark Problems

DSEM Code DSEM Name

ADDMUL Add, Multiply
ANDAT5 ANDs Attribute 5
CHKPAR Check Parameters
DATGEN Data Generator
DELAY Fixed Time Delay
DMANDQ Demand Queue
DUPLIC Duplicator
INVRT5 Inverts Attribute 5
ORATR5 ORs Attribute 5
PROCER Processor
QC0002 Quality Control
RANATR Random Attribute
RANROU Random Routing Switch
SELSW Selector Switch
SETVAL Set Value
SETSW Set Switch
SINC02 Sink
STEPSW Step Switch
THRUOT Throughput Finish Time
THRUST Throughput Starting Time
TIMU02 Timing Unit
UNITRY Initialization Control Generator
USER02 User Terminator

1LI
.9

Switch), to perform the same function. An option of the USER02 DSEM
is to generate a response message. USER02 blocks used in this
manner also had to be replaced by two other DSEMs -- RANATR (Random
Attribute) and SETSW.

Another DSEM that caused difficulties was DATGEN (Data
Generator). It was found, although it wasn't documented in the
user's manual, that certain parameters could not be set to certain
values. For example, the user could not generate a message
transaction with a transmission time delay although the user's
manual states that this is permissible. Trying to use the DATGEN in
this way stopped the program and produced a large dump. If a
Poisson distribution of interarrival times is specified in a DATGEN,
the resulting distribution is close to uniform. On General
Electric's advice (GE developed DSDS and maintains it for NASA), we
replaced the Poisson distribution with an exponential distribution
which functioned properly.

The DMANDQ (Demand Queue) DSEM set attribute 10 (a transaction
variable) to 0. The DSEM was corrected so attribute 10 would remain
unchanged. Another problem with the DMANDQ occurred late in the
implementation of benchmark problem II. Starting with about the
70th message through the system, a number of extra submessages were
generated in the model. Eventually this was traced to a D>MANDQ
DSEM. When this single DSEM was replaced with several other DSEMs
that performed the same function, the problem disappeared. Further
difficulties with the DMANDQ occurred in testing benchmark problem
Ila. Messages would not go through the DIANDQ DSEM, so all DMANDQ's
in the problem were eventually replaced.

During testing of benchmark problems II and III, it was
discovered that the RANROU (Random Routing) DSEM did not work
correctly. This DSEM would not route messages uniformly to their
destination -- some destinations received many more messages than
others. This fault was overcome in some places by using the RANATR
DSEM which performs the same function in a slightly different
manner. (This also required two DSEMs instead of one.)

Different system errors appeared with each problem tested.
Support from GE was adequate but they rarely corrected the errors.
Instead, they suggested ways to get around the problem by using
different DSEMs. As a result, the following errors are still in the
system:

1. DATSEN does not work for message transactions.

2. USER02 does not properly generate responses to message
transactions.

10

- .1*-

3) DATGEN cannot generate a message transaction with a
transmission-time delay.

4) DATGEN's Poisson distribution of interarrival times is
incorrect.

5) DMANDQ does not work.

6) RANROU does not route messages randomly.

Some higher level of support would be required from GE to get
these and other errors out of the system.

System Limitations

The major limitation imposed by DSDS is the high cost of running
models. DSDS was installed on the MITRE IBM 370 and optimized as
much as possible without actually changing it. However, due to its
high use costs the system is run only at night and even then its
costs are significant -- $20 to $50 per run for most benchmark
problems. Running the system at night also necessitates a lengthy
debugging process allowing only one user run per 24 hours.

Another important limitation of DSDS is the lack of attributes
available to the user. Attributes are used to store information
about a transaction. For example, it is often necessary to know the
type, origin, and destination of a message. These parameters can be
stored in attributes which are sent along with the message. The
user processes and routes messages through the system based on the
values in these attributes. DSDS has 11 attributes available, but
attributes 1 through 8 are used by the system. Thus only threeI attributes, 9 through 11, are available for message parameters.
This was a serious deficiency for benchmark problems II and V. In
both cases four attributes were required, so one attribute had to becoded to take the place of two.

The statistics produced by DSDS impose several limitations:

e Statistics on use cannot be obtained directly for a
resource made up of several DSEMs. This limitation was
only encountered in benchmark problem V and was circum-
vented in a way that would make the problem very costly
to run. DSDS has a set of DSEMs that could model such
resources and automatically collect the required
statistics, but they have never been debugged.

II

e DSDS does not produce minimum and maximum throughput time
statistics. This affects several of the benchmark problems.
There are cases where system performance requirements
dictate maximum throughput times and it is therefore
desirable to be able to collect such statistics.

e Statistics are rounded off to tens of milliseconds where
accuracy to milliseconds may be needed. This affects those
problems where system performance requirements, such as
throughput, are specified in milliseconds.

Model Debugging

Difficulties were encountered in debugging benchmark problems II
and V. It is easy to determine the origin of problems that result
in DSDS error messages, but logical errors that do not result in
error messages are more difficult to trace and correct. DSDS
provides trace statements called PULLATs. These allow the user to
specify DSEMs at which the user wants to collect data. When these
DSEMs are entered, the contents of attributes I through 11 are
printed along with the time. Although some useful information can
be obtained this way, it is often very difficult to trace a given
message through the system. For example, attribute 6 contains the
message number but each time a DUPLIC (Duplicate) DSEM is
encountered, only the first message duplicated keeps the message
number. Further problems are caused by the start- and end-time
controls for the PULLATs. The times given by the user are rounded
off to the nearest second. In problems dealing with milli- and
microseconds,. this means that if PULLATs are inserted the user will
probably receive many more pages of output than needed.

GE informed us of another DSEM that can trace through the model
-- DATCO. DATCO is supposed to take one message and list every DSEM
it or its submessages enters. However, this DSEM has not been used
since the system was developed and has never been documented. GE
was not sure the DSEM1 worked and, as it turned out, it didn't. It
does not trace when it is supposed to nor does it give a correct
trace.

BENCHMARK PROBLEM IMPLEMENTATION

All five of the benchmark problems have been modeled using DSDS.
Benchmark problems I, II, III, and V have also been implemented and
tested to differing degrees. The paragraphs that follow describe
the implementation status of each problem and any unique
difficulties or limitations found during implementation.

12

iI ! I W . ,, , ,,. IT

Benchmark Problem I

Benchmark problem I specifies a model of a communications
network described by its topology. GE implemented this problem
using DSDS. To simplify the modeling task, two new DSEMs were
created. One of these, PROCER, is used for modeling different types
of queueing and processing functions. Without this DSEM, modeling
any of the benchmark problems would be much more difficult. The
other new DSEM, ADDMUL, is used to change the value of an attribute
by multiplication or addition. This DSEM was used for benchmark
problem I to simulate data compression by multiplying attribute 8
(which stores the number of characters in a message transaction) by

GE used the interactive version of DSDS to implement problem I.
(The DSDS system installed at MITRE is the batch version.) The
major benefit of the interactive version is its curve plotting
feature, which GE used to plot the number of messages in the system
versus time. If this value increased continuously, then either the
model was incorrect or the system was unstable.

GE implemented all seven system configurations specified in the
problem. However, a major limitation was imposed on the
implementation of problem I. DSDS was not able to perform message
segmentation.

Benchmark Problem II

Benchmark problem II is the most complex of the benchmark
problems that have been implemented using DSDS. It requires
modeling a bus communications system consisting of a control bus, a
data bus, varying numbers of hosts, and a Network Control Element
(NCE). The actual modeling effort took place from December through
March. Testing began in early April, but the problem was not
actually running correctly until mid-July. A total of 44 man-days
(9 weeks) was spent on this problem -- about half the time in
modeling and re-modeling the problem and the other half in debugging
it.

Benchmark problem II was tested using the first configuration
specified in the problem -- four hosts generating 10 messages per
second. Changing the number of messages generated per second simply
involves changing a variable in the DATGEN DSEM. Increasing the
number of hosts requires an increase of 23 DSEMs per host added.

4 Thus a 7-host network requires about 220 DSEMs while a 10-host
network requires about 290 DSEMs.

13

Some features of the problem not modeled because of the amount
of extra code required were slotted buses and the collection of
certain statistics.

Benchmark Problem Ha

A slightly different version of benchmark problem II was also
modeled and an attempt made to implement it. This version required
modeling a bus communications system without an NCE and without a
control bus. Before sending a message on the bus, a host checks to
see if the bus is available. If so, a message is sent and an
acknowledgement returned. If two hosts send messages out on the bus
at the same time and a collision results, an acknowledgement is
never received and the message is retransmitted.

The approach taken to modeling this problem differed from that
taken in modeling problem II in one respect -- the use of sets.
DSEMs were put in four different sets to generate messages at the
four hosts. Linking these sets proved to be more difficult than
expected and is not covered in the user's manual. A number of
telephone calls to NASA/GE were required to solve this difficulty.
The problem was still being debugged when testing was halted. Six
man-days were spent in implementing this problem.

Benchmark Problem III

Benchmark problem III compares three loop architectures -- the
Pierce Loop, the Newhall Loop, and the Distributed Loop Computer
Network (DLCN). The Pierce Loop was the first problem modeled with
DSDS. This simple loop was an ideal initial problem because it
required only a short DSDS program (29 DSEMs). Modeling and running
the program took only about seven days and several different runs
were made. The Newhall Loop and DLCN were both modeled but not
tested.

Benchmark Problem IV

Benchmark problem IV requires the modeling of a local computer
network employing a loop as the communications subsystem. The only
difficulty in modeling the problem was its size. Modeling 6 hosts
with 50 terminals attached to each host would have required an
extremely large DSDS program. Thus the size of the system was cut
to three hosts with three terminals each. Even modeling this
abbreviated version required about 160 DSEMs. Each added host (with
3 terminals attached) would require 50 more DSEMs and each added
terminal would require about 10 more DSEMs. Thus 6 hosts with 50

14

terminals each would require over 3000 DSEMs. Some of this code
could probably be combined, but the program would still be very
large and costly to run.

Benchmark Problem V

This problem differs from the other benchmark problems in that
it requires detailed modeling of a computer system. DSDS has a
special set of DSEMs capable of this level of modeling detail and
the problem was first modeled using these so-called third-level
DSEMs. However, there were two reasons for serious doubts as to

whether this model would work: the DSDS user's manual description of
the use of these DSEMs is very unclear, and GE informed us that some
of the DSEMs were not well tested and might not work. As it turned
out, it was necessary to model benchmark problem V without using
third-level DSEMs.

The main difficulty in developing this model was in collecting
statistics. For example, modeling the activity of a display console
without using a third-level DSEM requires several DSEMs. With DSDS
it is not directly possible to compute one utilization for the
console when the console is made up of several DSE~s, so an area in
storage available to the user and defined as the array SETGET (I)
(I=1, ... 100) was used. For example, SETGET (1) was set o 1 when
the console was busy and to 0 when it was not busy. At regular,
brief intervals the value in SETGET (1) was checked to get the
required utilization. CPU and storage utilizations were obtained
the same way. This procedure increased the size of the DSDS
program, the possibility of errors, and the cost of a computer run.

As with benchmark problems II and IV, the size of the problem
was cut back severely. Ten to twelve terminals are specified in the
problem but the model used only 3 terminals and still contained 139
DSEMs. Each additional terminal would have required 14 additional
DSEMs. Thus a 10-terminal system model would have required 237
DSEMs.

When testing was terminated, the model was exceeding the
specified time limit and routing messages incorrectly. The
debugging aids in DSDS were of little help in tracing such problems.
Twenty-one days were expended modeling the problem and another four
attempting to run it. Most of the modeling time was spent trying to
understand a rather complex problem and then figuring out how to use
the third-level DSEMs.

15

SECTION 3

RESULTS OF EVALUATION

The purposes of the study were to evaluate DSDS via actual use
and at the same time develop a set of recommended enhancements to
make DSDS more useful for modeling ESD/MITRE system problems.
Implementing the benchmark problems provided the basis for a more
detailed evaluation than previously possible.

EVALUATION FACTORS

A number of evaluation factors were developed in a preliminary
study. Table 2 lists these factors together with the ratings
given in that study and the ratings given as a result of this
evaluation.

System Performance Time

DSDS efficiency is poor. DSDS required about 60 CPU seconds for
every second of simulation time to run benchmark problem II. By way
of comparison, a GASP IV program simulating benchmark problem II
required less than 2 CPU seconds for every second of simulated time.
To run the Pierce Loop (benchmark problem III) also required a great
deal of CPU time considering the small size of the problem.
Generating 1.7 messages per second per host for six hosts required
almost 2 seconds of CPU time for every second of simulated time.

System Learn Time

DSDS is relatively easy to learn compared to a standard
simulation language. Although the system provides over 150 DSEMs,
only about 25 should be necessary to model most ESD/MITRE problems.
Most users could get a good understanding of DSDS in a week.
However, to facilitate learning and use, the user's manual needs
substantial revision and expansion. For example, it needs an
expanded section on the operation of the batch system, an expanded
section on the DSEMs most applicable to ESD/MITRE problems and
better sample problems.

16

Table 2

DSDS Evaluation Factors

Result*
Preliminary

Evaluation Item Study After Testing

System Performance 3 2

Useability (by Analyst)

System learn time 4 4
Input language 4 4
Model build time 4 4
Diagnostics 4 3
Model modifiability 5 3
Output reports 4 3

User Documentation 4 3

Use Costs 2-3 1

*Rating: 0-Not available, 1-Very poor, 2-Poor, 3-Fair, 4-Good,
S-Excellent.

17

Input Language

The input language earns a rating of good. It requires from
three to six lines of code per DSEM to reflect information from the
model diagram including coded parameters for each DSEM. However,
the diagram from which the DSEMs are generated is, if kept up-to-
date, a more readable and more understandable record of the model
than the list of DSEMs.

Model Build Time

A DSDS model is easy to build. Most models were constructed in
a few man-days once both the problem and the use of the DSEMs were
understood. However, original model designs usually went through a
number of changes as more was discovered about DSDS. Another factor
affecting model build time is that the system is too costly to use
during the day. This means that only one debug run can be made
every 24 hours versus 2, 3, or more on a system that can be run
during working hours. (See Use Costs below). This results in a
very lengthy debugging process.

Diagnostics

DSDS is very good at pointing out programming errors, but it is
less helpful in detecting logical errors. PULLATs are available to
trace transactions through the system, but they have certain
limitations that are discussed in section 2, Model Debugging. Thus
DSDS diagnostics are only rated fair. If the user could get an
easy-to-read trace of a message through the system, DSDS's
diagnostic rating could be changed to very good. (This capability
is in fact available on the interactive version of DSDS.)

Modifiability

The modifiability of a DSDS program can be rated fair. It is
easy to change the rate at which messages are generated, but
changing message routing is more difficult. This is especially true
when one attribute is serving more than one purpose, as in problem
II or V. If DSDS allowed the user o use more attributes, DSDS's
rating for modifiability could be increased to good.

Output Reports

DSDS output reports receive a rating of fair. DSDS computes a
lot of statistics, but a few are missing. Missing statistics
include minimum and maximum throughput times from DATGEN to USER02,
from THRUST (Throughput Start Time) to THRUOT (Throughput Finish

18

Time), and from individual PROCER DSEMs. Mean throughput statistics
are given rounded to hundredths of seconds. This is inadequate for
some problems.

The user also does not have enough control over the output. At
times it would be useful to either print out intermediate results or
to reset the statistics and start computing them from the present
point in the program. Neither can presently be done using DSDS. In
addition, the batch version of DSDS does not have the capability to
produce graphs and histograms.

User Documentation

The user documentation earns another rating of fair. The latest
user's manual is an improvement over previous manuals, but it still
has some deficiencies. It contains too much information on the
interactive version of DSDS and not enough on the batch version, and
it has inadequate descriptions for the use of some DSEMs. The DSDS
user's guide also needs updating. The principal need is to change
the examples from NASA-oriented problems to ESD/MITRE oriented
problems.

Use Costs

As previously mentioned, DSDS uses a lot of CPU time. However,
this is not the only cost that is high. To run DSDS requires either
a large number of disk accesses (up to 33,000) or a 7300K byte
region size. Both approaches are prohibitively expensive except at
night. At MITRE there is a 40 percent discount for deferred (night)
jobs, and the maximum region the user is charged for is 1000K. Thus
a 5-second run for benchmark problem II that would cost about S225
during the day costs about $65 at night. This is still very
expensive for just one short run -- 5 seconds may not be long enough
to tell the user anything meaningful about the system modeled. If a
number of sensitivity analyses need to be made using DSDS, the costs
could quickly become very high.

ENHANCEMENTS

It is clear from using DSDS to model the benchmark problems
that a number of enhancements are necessary to make DSDS a useful
tool for modeling ESD/MITRE problems. Some of the things that can
be done are:

* Improve efficiency
" Correct system errors
" Increase the number of attributes

19

9 Improve tracing facilities
9 Improve SETGET capabilities
* Add throughput statistics
* Provide run-time statistics
* Provide more significant digits
9 Produce graphs and histograms
* Allow use of subroutines
e Provide user access to random number seeds

The most important improvement would be a reduction in the high
computer costs of using DSDS. Improved efficiency would not only
reduce costs: sufficient improvement would allow the system to be
used during the day, thereby also reducing model build time.

A number of system errors were discovered during implementation
of the benchmark problems (see section 2). These errors need to be
corrected and the system thoroughly tested to eliminate as many
other errors as possible.

Another important enhancement is to increase the number of
attributes. Eleven attributes are not enough if eight of them are
used by the DSDS system. GE is planning changes that will make
fourteen more attributes available to the user on the interactive
version of DSDS. This change could also be implemented on the batch
system.

A better means of tracing messages through a DSDS model is also
necessary. The DATCO DSEM would help if it were documented and if
it worked. Another solution is for the user to number each message
by setting one attribute to a message number. However, this
requires yet another attribute when DSDS already has too few.

Another enhancement, that might be considered is the ability to
route on values in the SETGET array and collect statistics on those
values (average, minimum, maximum, etc.). For example, if SETGET
(1) contains a value indicating the status of a terminal (O=idle,
l=busy) the routing capability would allow the user to route
messages elsewhere if the terminal is busy. If statistics were
gathered, the utilization of the terminal would automatically be
computed. This would greatly simplify the implementation of problem
V.

It would also be useful to allow multiple THRUST/THRUOT
(throughput statistics) pairs. Currently if two THRUST statements
are encountered a message only remembers the second. Thus
throughput statistics are only collected between the last THRUST
statement and a THRUOT statement. It is often useful to get
throughput times from more than one point in the system, but right

20

now this can only be done by making separate runs. Minimum and
maximum throughput times for THRUST/THRUOT pairs, DATGEN/USER02
pairs and individual PROCER blocks are not available, but these are
necessary particularly where maximum throughput requirements are
specified.

The user ought to be able to print out intermediate results or
reset the statistics and start computing from a point other than the
initial start time. This feature is partially implemented in the
interactive DSDS (a run can be interrupted and the model changed),
but queues are not reset when execution resumes.

Since many communication problems deal in milli-, micro-, even
nanoseconds, DSDS must provide statistics that have more accuracy.
The system presently rounds output to hundredths of seconds.

Graphs and histograms of various queue values and utilizations
should be provided as optional output reports. The system does not
provide this statistical information to the user, so such graphs
cannot even be prepared manually.

Two other enhancements are worth considering. One is to allow
the use of subroutines in DSDS -- this might make a DSDS program
shorter and easier to read. The other is to allow the user to alter
random number seeds in order to make model replications which

4otherwise would always be identical.

21

SECTION 4

SUMMARY AND CONCLUSIONS

This report presented the results of an evaluation of a general
purpose modeling system, DSDS, using five benchmark problems
representative of C3 systems. All problems were modeled and
required from 1 to 9 man-weeks of effort per problem. Based on
these study results, DSDS in its present form is not recommended for
general use by ESD/MITRE systems engineers. Before such a
recommendation could be made, a number of improvements are
necessary.

The most important improvement is to make the system more
efficient. This would reduce user costs (the major system
limitation) and allow the system to be used during the day. Being
able to test a model several times a day would also significantly
reduce model development time.

The other major improvement needed is to make the system more
error free. A number of system errors were encountered during the
implementation of the benchmark problems. These indicate that a
comprehensive testing, validation, and maintenance effort would be

4 required.

It has been proposed that MITRE examine the interactive version
of DSDS to see how it compares with batch version. The interactive
system is presently hosted on a VAX time sharing system at
NASA/Goddard and on a dedicated PRIME at NASA/Marshall.

22

LIST OF REFERENCES

GRAF79 H. A. Graf, "Training Manual for Data Systems Dynamic
Simulator," Doc. 78HV091, General Electric Company,
Huntsville, Alabama, 1 September 1979.

HOOP78 J. W. Hooper and D. W. Rowe, "Data Systems Dynamic
Simulator -- A Total System for Data System Design
Assessments and Trade Studies," The Eleventh Annual
Simulation Symposium, Tampa, Florida, 15-17 March
1978.

NASA76 National Aeronautics and Space Administration, "Study
to Establish Models and Simulation for Data Systems,
Final Report, Volume 2: User's Manual," Marshall Space
Flight Center, Huntsville, Alabama, 17 June 1976.

NASA79 National Aeronautics and Space Administration, "Data
Systems Dynamic Simulation (DSDS), Simulation Analysis
Report, Communications Network Design Problem,"
Marshall Space Flight Center, Huntsville, Alabama,
October 1979.

NASA80 National Aeronautics and Space Administration,
"Interactive Data Systems Dynamic Simulation (DSDS)
User's Manual," Marshall Space Flight Center,
Huntsville, Alabama, January 1980.

23

APPENDIX

DSDS SYSTEM DESCRIPTION

The NASA Data System Dynamic Simulator (DSDS) was developed for
NASA by GE. DSDS, designed to simulate large data processing and
communications systems, has been used to support trade off studies
of NASA's data system'needs in the 1985 to 1990 time frame. It is
designed to perform comprehensive design analyses and trade off
studies of alternate system configurations, and to reduce the time
and cost of performing simulations by using preprogrammed
parameterized models of system elements. DSDS simulates timing,
control and sizing characteristics, and has features to estimate the
cost and personnel support characteristics of the system simulated.
DSDS uses a building block approach: just as hardware and software
elements are pieced together to form a system, so are models of the
elements pieced together for system simulation.

DSDS uses modular entities called Data System Element Models
(DSEMs), which are parameterized models of system elements, such as
a multiplexer, tape unit, software task, central processor,
terminal, etc. The equations and protocol that duplicate the
functions of these elements are provided in the form of subroutines.
Functionally, a DSEM subroutine processes data entering the element
according to user-specified performance parameters. This processing
produces element throughput characteristics and generates demand for
computer resources and personnel resources.

DSEMs consist of mathematical and logical relationships, all
preprogrammed. Only characteristic parameters are specified to
tailor the DSEM to the user's requirements; no programming skill is
required. Modelers are provided block diagrams of each DSEM with
labeled inputs and outputs. Elements are interconnected to form
complete system models by directing outputs from one DSEM to inputs
of another, in the same manner that hardware is interconnected.
Figure A-1 shows the DSEMs required to represent a subnet node in
benchmark problem I.

The DSDS model library contains DSEMs modeled to three levels of
detail -- Global, Intermediate, and Subsystem -- Global models being
the least, and Subsystem models the most detailed. The different
levels of DSEMs may be intermixed within a single system model.
Thus, once a portion of a system has been satisfactorily designed,
modeled and "shaken down," it may be replaced by a higher-level DSEM

24

- 00 WU

a z

a 00
CL ,

W4m CA.

In O SS

-J .n0~ -

- a 4.,

SM SM -C3

SM SM ZI UN

0 0
In0

t-J 0. viS
In 4Ao

00.

25-

(or DSEMs) while other portions of the system are studied in detail.
Use of a higher-level DSEH saves computer time by eliminating
unnecessary model detail.

Other DSDS system components include a computer resource
scheduler, a personnel resource scheduler and an executive.
Computer resources requested by a DSEM are scheduled and provided as
they become available. A record is kept of the demand for these
resources. Similarly, personnel resources are requested by DSEMs
and scheduled by the personnel resource scheduler. The executive
connects the DSEMs and controls the flow of the simulation.

The system produces nine different throughput and resource
utilization statistics reports, and five different operational
reports. Statistics (table A-l) include performance statistics on
messages, utilization statistics for system elements, and statistics
regarding the need for operational support.

DSDS is owned by the government (NASA) and is currently
available for installation on other computer systems. There are two
versions of the system -- batch and interactive. The batch system
is installed on an IBM 360/75 at Huntsville. The interactive
version is installed on a PRIME computer at Huntsville and on a DEC
VAX system at NASA-Goddard. GASP IV, a FORTRAN-based simulation
language, was used to develop the DSDS system software and FORTRAN
was used to implement the individual DSEMs.

26

Table A-i

DSDS Output Statistics

Message Statistics
e Transit time - mean and standard deviation
* Number of messages by origin-destination pairs
* Number of bits by origin-destination pairs

System Element Statistics
* Throughput - mean
* Utilization - percent
* Transmit time - mean

Storage Statistics (per device)
* Utilization - percent
* Messages in storage - mean, standard deviation,

maximum, minimum
* Time in storage - mean, standard deviation, maximum,

minimum

Queue Statistics (per element)

* Messages in queue - mean, standard deviation, maximum,
minimum

* Time in queue - mean, standard deviation, maximum,
minimum

CPU Statistics (per device)
" Utilization - mean, percent

* Queueing - maximum

Operations Statistics
e Manpower per skW_ code - hours, percentage
* Personnel per skf11 code - available, maximum demand,

average demand
* Queueing per skill code - mean, standard deviation,

minimum, maximum

Cost Statistics
0 Per element
* Per facility

27

Fl

Ile"

